外啮合斜齿轮
名称 | 代号 | 小齿轮 | 大齿轮 |
---|---|---|---|
法向模数 | \(m_{n}\) | ||
齿数 | \(z\) | ||
法向变位系数 | \(x_{n}\) | ||
分度圆螺旋角(\(^{\circ}\)) | \(\beta\) | ||
法向压力角(\(^{\circ}\)) | \(\alpha_{n}\) | ||
端面压力角(\(^{\circ}\)) | \(\alpha_{t}\) | ||
\(inv \ \alpha_{wt}\) | |||
端面啮合压力角(\(^{\circ}\)) | \(\alpha_{wt}\) | ||
中心距变动系数 | \(y\) | ||
中心距 | \(a\) | ||
全齿高 | \(h\) | ||
齿顶高 | \(h_{a}\) | ||
分度圆直径 | \(d\) | ||
啮合节径 | \(d_{w}\) | ||
齿顶园直径 | \(d_{a}\) | ||
齿根园直径 | \(d_{f}\) | ||
基园直径 | \(d_{b}\) | ||
计算说明:
$$ \alpha_{t}=atan\left ( \frac{\tan \alpha_{n} }{\cos\beta } \right )$$
$$ inv\ \alpha_{wt}=2\left ( \frac{x_{n1}+x_{n2}}{z_{1}+z_{2}} \right )\tan\alpha_{n}+inv\ \alpha_{t}$$
$$y=\frac{z_{1}+z_{2}}{2\cos\beta } \left ( \frac{\cos\alpha _{t}}{\cos\alpha _{wt} } -1 \right )$$
$$d=\frac{zm_{n}}{\cos \beta }$$
$$d_{b}=d\cos\alpha_{t}$$
$$d_{w}=\frac{d_{b}}{\cos\alpha_{wt}} $$
$$h_{a1}=(1+y-x_{n2})m_{n}$$
$$h_{a2}=(1+y-x_{n1})m_{n}$$
$$h=(2.25+y-x_{n1}-x_{n2})m_{n}$$
$$d_{a}=d+2h_{a}$$
$$d_{f}=d_{a}-2h$$